

Miscellaneous Exercise Question Bank

1.(A)
$$TV^{\gamma-1} = k$$

$$\therefore \qquad T_2 = T_1 \Bigg(\frac{V_1}{V_2} \Bigg)^{\gamma-1}$$

$$\Rightarrow \quad \text{Since } \frac{V_1}{V_2} > 1 \quad \Rightarrow \quad T_2 \ \text{is greater for higher value of } \gamma$$

 \therefore T₂ is greater for monoatomic gas X.

2.(A)
$$PV^{\gamma} = k$$

$$\log P + \gamma \log V = \log k$$

$$\Rightarrow \qquad log \, P = - \, \gamma \, log \, V + log \, k$$

$$\therefore$$
 Slope = $-\gamma$

Since graph C has lowest slope

 \therefore Graph C is for highest value of γ i.e. for monoatomic gas

3.(BD) For a process to be spontaneous
$$(\partial G)_{T,P} < 0$$
, $(\partial E)_{S,V} < 0$

Absolute value of internal energy cannot be known and ΔG_f° can be known

5.(BD) According to second law, entropy of universe is continuously increasing and all spontaneous process are thermodynamically irreversible

$$G = H - TS$$

$$\Delta \mathbf{E} = \mathbf{q} + \mathbf{w}$$

$$\Delta H = \Delta E + \Delta n_g RT$$

$$H = E + PV$$

7.(C) In stretching of rubber band entropy decreases but in all other cases entropy increases.

8.(ACD)
$$|\mathbf{w}_{rev}| > |\mathbf{w}_{irr}|$$
 (for isothermal expansion)

$$\Delta G^{\circ} \neq 0$$

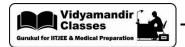
(at equilibrium)

$$\Delta G = \Delta S = 0$$

(at equilibrium)

$$\Delta H < 0$$

for exothermic reaction


9.(D)
$$\Delta G < 0$$
 for spontaneous process

$$\Delta G = \Delta H - T \Delta S$$

11.(A) For cyclic process,
$$\Delta G = \Delta H = \Delta S = 0$$
 because all are state functions

13.(B)
$$\Delta G = \Delta H - T \Delta S$$

14.(C)
$$\Delta G = \Delta H - T\Delta S$$

15. $(A \rightarrow p, q, r, s, t; B \rightarrow p, q, t; C \rightarrow p, q, r, s, t; D \rightarrow r, s)$

(A) u_{rms} increase with increase in temperature

If a gas does adiabatic work

$$\Rightarrow$$
 q = 0, w = -ve

$$\therefore$$
 $\Delta U = -ve \Rightarrow$ Temperature is decreasing

$$\Rightarrow$$
 u_{rms} decreases when gas undergoes dimerisation as molecular mass increases

$$\Rightarrow \qquad u_{rms} \,\, \mbox{increases when gas undergoes dissociation}$$

- **(B)** KE increase as T increase
- (C) PV increase with increase in number of moles and increase in temperature
- (D) $\frac{1}{T_0}$ increases when attraction decreases

16. $(A \rightarrow s; B \rightarrow r; C \rightarrow p, t; D \rightarrow q)$

$$\ln \frac{P_2}{P_1} = \frac{\Delta H_v}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

$$\left[\frac{\partial (\Delta G)}{\partial T}\right] = \Delta C_{p}$$

$$\Delta G = \Delta H + T \Bigg[\frac{\partial (\Delta G)}{\partial T} \Bigg]_P \; ; \; \Delta G = \Delta U + T \Bigg(\frac{\partial (\Delta G)}{\partial t} \Bigg)_V \label{eq:deltaG}$$

$$\frac{d\ell nK_P}{dT} = \frac{\Delta H^\circ}{RT^2}$$

17.
$$(A \rightarrow q; B \rightarrow r; C \rightarrow p; D \rightarrow s)$$

$$\Lambda G^{\Theta} = -RT \ln K$$

$$\Delta H = \Delta U + P \Delta V$$

$$\Delta S = nR \, \ell n \frac{V_2}{V_1}$$

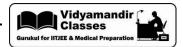
$$\Delta G = -nFF$$

18.(A) Since the given process is in equilibrium i.e. $\Delta G = 0$

$$\Delta G = \Delta H - T \Delta S$$

or
$$0 = \Delta H - T\Delta S$$
 or $\Delta H = T\Delta S$

or
$$\Delta S = \frac{\Delta H}{T} = \frac{6}{273} \times 10^3 \text{ JK}^{-1} \text{ mole}^{-1} = 21.98 \text{ JK}^{-1} \text{mole}^{-1}$$


Hence, (A) is the correct answer.

19.(A) ΔG is +ve if ΔH is +ve and ΔS is -ve. Thus, reaction is non-spontaneous.

Hence, (A) is the correct answer.

20.(C) Energy available for muscular work =
$$\frac{2880 \times 25}{100}$$
 = 720 kJ / mol

Energy available for muscular work for 120 g glucose =
$$\frac{720 \times 120}{180}$$
 = 480 kJ

- **21.(D)** For reversible adiabatic process ΔS_{Total} Total as well as ΔS_{sys} is equal to zero.
 - The reversible work will depend on the path, exception being some particular cases, for example the adiabatic case, is which q=0, so that $\Delta U=-W$ and W is therefore path independent.
 - ➤ Heat capacity is extensive property

22.(A)
$$\Delta G = \Delta H - T\Delta S$$

$$\textbf{23.(C)} \qquad \left(\Delta S\right)_{sys} = nC_{V,m} \, \ell n \frac{T_2}{T_1} + nR \, \ell n \frac{V_2}{V_1}$$

For isothermal free expansion; $T_2 = T_1$

$$\Rightarrow \qquad \left(\Delta S\right)_{sys} = nR\,\ell n \frac{V_2}{V_1} = 1 \times R\,\ell n \frac{3V}{V} = R\,\ell n 3$$

24.(C)
$$W_{BDA} = 10J = W_{BD} + W_{DA} = W_{DA}$$

$$q_{BDA} = -60 J$$

$$\Rightarrow \quad \left(\Delta U\right)_{B\to A} = 10 - 60 = -50 \text{ J} = U_A - U_B \qquad \Rightarrow \qquad U_A - U_B = -50$$

$$U_B - U_C = 30$$

$$\therefore \qquad \mathbf{U_C} - \mathbf{U_A} = 20 = \mathbf{q_{AC}} (\mathbf{W} = \mathbf{0})$$

$$\Rightarrow$$
 $W_{ACB} = -20 = W_{CB}$

$$\Delta U_{CB} = 30 \, J$$
 \therefore $q = 30 + 20 = 50 \, J$

25.(C)
$$W = -P_{ext}\Delta V = -1.25 \times 32 = -40 \text{ lt} - \text{bar} = -4000 \text{ J} = -4 \text{ kJ}$$

$$\Delta U = -51 \text{kJ}$$

$$\therefore$$
 q = -47 kJ

26.(A)
$$W_{max} = W_{rev} = -nRT \ln \frac{V_2}{V_1} = -1 \times 8.314 \times 310 \ln \frac{25}{15} = 1316 J$$

- 27.(A) (A) Randomness decreases
 - (B) Randomness increases
 - (C) Randomness increases as gaseous moles increasing
 - (D) Randomness increases as gaseous moles increasing
- **28.(B)** HA is more acidic as heat released is more.

So pH of HB is higher than that of HA.

29.(D) For irreversible process, only initial and final states are defined

30.(B)
$$\Delta H = \Delta U + \Delta (PV)$$

31.(B)
$$\Delta G^{\circ} = -RT \ln K_n$$

Now
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

32.(C) Amount of heat released is same as number of moles are same in both cases

$$\Rightarrow$$
 q = ms ΔT \Rightarrow 2 × s × 10 = 3 × s × ΔT

$$\Rightarrow \quad \Delta T = \frac{20}{3} = 6.67^{\circ}C$$

33.(C)
$$\Delta S = \frac{\Delta H}{T} = \frac{-6000}{273} = -21.98 \text{ J/mol-K}$$

34.(A)
$$N_2O_4 \rightleftharpoons 2NO_2$$

 $t = 0$ 1mole

t
$$(1-x)$$
 mole $2x$ mole

$$\Rightarrow (M)_{avg} = 2 \times \frac{230}{6} = \frac{92}{1+x} \Rightarrow 230 + 230x = 276 \Rightarrow x = \frac{46}{230}$$

$$\therefore \qquad K_p = \left[\frac{2 \times \frac{46}{230} \left/ 1 + \frac{46}{230}}{1 - \frac{46}{230} \left/ 1 + \frac{46}{230}} \right] \; ; \qquad \text{Now} \qquad \Delta G^\circ = - \, RT \, \ell n \, K_p \right]$$

$$\Rightarrow \quad 10 \times 0.45 \times \left(100 - T\right) = 25 \times 4.2 \times \left(T - 27^{\circ}\right) \quad \Rightarrow \quad T = 30^{\circ}C$$

37.(A)
$$\Delta U = W = -75 \, \text{cal} = n \, \text{C}_{V.m} \, \Delta T$$

$$\Rightarrow -75 = \frac{0.1 \times 3 \times 2}{2} \times \Delta T \Rightarrow \Delta T = -250$$

$$T_2 = 250 \,\mathrm{K}$$

38.(C)
$$c = \frac{R}{\gamma - 1} + \frac{R}{1 - n}$$
 $\left[n = \frac{1}{2} \text{ for this polytropic process} \right]$

$$c = \frac{R}{\frac{5}{3} - 1} + 2R = \frac{3R}{2} + 2R = \frac{7R}{2}$$

39.(C)
$$\Delta S = nC_{p,m} \ \ell n \frac{T_2}{T_1} = 2.5 \times 18 \times 4.2 \ \ell n \frac{360}{300} = 34.02 \ J \ / \ K$$

40.(B)
$$\Delta S^{\circ} = 2\,S_{Fe}^{\circ} + 3\,S_{H_2O}^{\circ} - S_{Fe_2O_3}^{\circ} - 3\,S_{H_2}^{\circ}$$

41.(C)
$$\Delta G = \Delta H - T\Delta S$$

For isothermal expansion of ideal gas, $\Delta H = 0$

$$\therefore \quad \Delta G = - T \Delta S$$

42.(C)
$$\Delta S = \frac{\Delta H}{T} = \frac{40.85 \times 0.2}{373} = 0.0219 \,\text{kJ/K} = 21.9 \,\text{J/K}$$

$$\textbf{43.(C)} \qquad \Delta G = nRT \ \ell n \frac{P_2}{P_1} = nRT \ \ell n \frac{V_1}{V_2} = 1 \times 8.314 \times 300 \ \ell n \frac{1}{2} = -1.728 \ kJ \ / \ mol \ K = 1.00 \ / \ mol \ K = 1.0$$

45.(A)
$$\Delta S = 0 = nC_{P,m} \ell n \frac{T_2}{T_1} + nR \ell n \frac{P_1}{P_2}$$

$$\Rightarrow \frac{5R}{2} \ell n \frac{600}{300} = -R \ell n \frac{1}{P_2} \Rightarrow \ell n P_2 = \frac{5}{2} \times 0.7 = 1.75 \text{ atm}$$

(D)

 $\mathbf{w} = \mathbf{0}$

46.(C) PV = nRT
$$\frac{P_1}{n_1} = \frac{P_2}{n_2}$$

But $P_1 < P_2$, hence $n_1 < n_2$ or $m_1 < m_2$

47. $(A\rightarrow p, r; B\rightarrow s; C\rightarrow q; D\rightarrow q;)$

(A) For isothermal reversible process,

$$w = -2.303 \, nRT log \frac{P_1}{P_2} = -2.303 \, nRT log \frac{V_2}{V_1}$$

(B)
$$w = \frac{nR}{\gamma - 1} (T_2 - T_1)$$
 (C) $w = 0$

48.(ACD) For O_2

$$C_{v} = \frac{5R}{2} = 5 \text{ cal}$$
 , $C_{p} = \frac{7R}{2} = 7 \text{ Cal}$

$$C_p = \frac{R\gamma}{\gamma-1} \qquad \qquad , \qquad C_v = \frac{R}{\gamma-1} \label{eq:cp}$$

49.(A)
$$W = -P\Delta V = -nR\Delta T = -R$$

50.(B) ΔH is +ve, even then it is spontaneous as ΔS is +ve

51.(B) At equilibrium
$$\Delta G = 0$$
 \Rightarrow $\Delta H = T\Delta S$

52.(A)
$$\Delta H = \Delta U + \Delta (PV)$$

At constant pressure

$$\Delta H = \Delta U + P\Delta V$$

53.(D) I is incorrect

54.(B) $\Delta U = 0$ for an isothermal process for an ideal gas

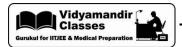
55.(D) According to Joule Thomson effect, hydrogen gas get heated when expand adiabatically

56.(C) II is correct because for a spontaneous process, ΔG should be negative

57.(A) Both are correct

58.(B) Both are correct but not correct explanation

59.(C) ΔH for formation of O_2 is zero but the entropy of formation of O_2 is non-zero


60.(C) II statement is incorrect as endothermic reaction can also be spontaneous

61.(B) Both are correct

62.(A) Enthalpy of formation is negative

63.(E) Pressure is an intensive property

Extensive properties depend only on amount of the substance

64.(E) In vacuum, work done is zero

Work done depend on external pressure

65.(A)
$$q = 0, w = -ve, \Delta U = -ve$$

66.(A) $\Delta U = 0$ for cyclic process

67.(B)
$$\Delta G = \Delta H - T \Delta S$$

68.(C) $\Delta G = \Delta H - T\Delta S$

69.(A)
$$C_2H_5OH(\ell) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(\ell)$$

$$\Delta n_g = 3/2=-1$$

So
$$\Delta U = \Delta H - \Delta n_g RT = -q + RT$$

70.(C) For same amount of gas at constant temperature, lesser is the volume lower will be the entropy.

71.(B)
$$\Delta_r H = \frac{8}{9} \times 45.54 + \frac{1}{9} \times 68.91 = 48.137 \text{ kJ}$$

72.(A) $\Delta_r S^o(NH_4Cl, s)$ at 300 K

$$=S_{NH_4Cl(s)}^o - \left[\frac{1}{2}S_{N_2}^o + 2S_{H_2}^o + \frac{1}{2}S_{Cl_2}^o\right] = -374 \text{ JK}^{-1}\text{mol}^{-1}$$

$$\Delta_r C_p = 0$$

$$\Delta_f S_{310}^0 = \Delta_f S_{300}^0 = -374 \text{ JK}^{-1} \text{mol}^{-1}$$

$$\Delta_{\rm f} H_{310}^{\rm o} = \Delta_{\rm f} H_{300}^{\rm o} = -314.5$$

$$\Delta_f G_{310}^o = \Delta_f H^o - 310 \Delta S^o = -314.5 - \frac{310(-374)}{1000} = -198.56 \text{ kJ/mol}$$

73.(A) BC is a straight line & equation can be obtained by using

$$(y-y_1) = \frac{y_2-y_1}{x_2-x_1}(x-x_1)$$

$$(P-3P^{o}) = \frac{P^{o}-3P^{o}}{2V^{o}-V^{o}}(V-V^{o}) \Rightarrow (P-3P^{o}) = -\frac{2P^{o}}{V^{o}}(V-V^{o})$$

Replacing P by t by using $P = \frac{RT}{V}$ in equation (1)

$$\left(\frac{RT}{V} - 3P^{o}\right) = -\frac{2P^{o}}{V^{o}}(V - V^{o}) \Rightarrow T = \frac{2P^{o}V(V - V^{o})}{V^{o}R} + \frac{3P^{o}V}{R}$$

For T be maximum

$$\frac{dT}{dV} = 0$$

$$\frac{dT}{dV} = -\frac{2P^o(2V-V^o)}{V^oR} + \frac{3P^o}{R} = 0 \Rightarrow V = \frac{5}{4}V^o$$

$$T_{max} = -\frac{2P^{o}\frac{5}{4}V^{o}\left(\frac{5}{4}V^{o} - V^{o}\right)}{V^{o}R} + \frac{3P^{o}\frac{5}{4}V^{o}}{R} = \frac{25}{8}\left(\frac{P^{o}V^{o}}{R}\right)$$

Solution | Workbook-2 10 Thermodynamics

74.(B) HA
$$\longrightarrow$$
 H⁺ + A⁻; Δ H = 1.4 kJ/mol

$$\Delta H_{\text{neutralization}} = \Delta H_{\text{ionization}} + \Delta_r H \text{ of } (H^+ + OH^- \rightarrow H_2 O)$$

$$-55.95 = \Delta H_{\text{ionization}} - 57.3$$

$$\Delta H_{\text{ionization}}$$
 for 1 M HA = 1.35 kJ/mol

% heat utilized by 1 M acid for ionization =
$$\frac{1.35}{1.4} \times 100 = 96.43\%$$

So, acid is 100 - 96.43 = 3.57% ionized.

75.(B)
$$0.42 = a(10)^3 \Rightarrow a = 0.42 \times 10^{-3}$$

$$S_{m} = \int_{0}^{10} \frac{C_{p.m.}}{T} dT = \int_{0}^{10} aT^{2} = \frac{a}{3}[10^{3} - 0] = \frac{0.42}{3} = 0.14 \text{ J/K-mol}$$

76.(BC) If the initial and final temperature is equal, it does not imply the process is isothermal. The gas can initially be heated and then cooled to bring it to the same value.

$$dG = dH - d(TS)$$

$$= dH - d (10T + 10^{-2} T^2)$$

$$\Delta G = \Delta H - \Delta (10T + 10^{-2}T^2) = nC_p(T_2 - T_1) - 10(T_2 - T_1) - 10^{-2}(T_2^2 - T_1^2)$$

$$n = \frac{PV}{RT} = \frac{24.6}{0.0821 \times 300} = 1$$

$$C_P = \frac{5R}{2}$$

$$\Delta G = 378.5 \text{ J}$$

78.(ABC) (A) \triangle E will be –ve for combustion reactions

(B)
$$\Delta H_f^0$$
 (S, rhombic) = 0

(C)
$$CH_4(g) \longrightarrow C(g) + 4H(g)$$

$$\Delta H = 1656 \text{ kJ/mole} = 4\Delta H_{C-H}$$

$$C_2H_6(g) \longrightarrow 2C(g) + 6H(g)$$

$$\Delta H = 2812 \text{ KJ/mole} = 6 \Delta H_{C-H} + \Delta H_{C-C}$$

So
$$\Delta H_{C-C} = (2812 - \frac{6}{4} \times 1656) \text{ kJ/mole} = 328 \text{ kJ/mole}$$

(D) Can not be concluded from given data.

79.(C)

- 80.(ABCD) (A) Reversible adiabatic process is isoentropic
 - (B) Reaction is spontaneous, need not be exothermic
 - (C) Only when PV work is involved

(D)
$$\Delta S_{system} = \frac{\Delta H_{system}}{T_b} = -\frac{40600}{373 \times 2} = -54.42 \text{ J/K}$$

81.(AB) The given reaction will be spontaneous when ΔG would be negative when $\Delta H - T\Delta S$ is negative. Then is, $\Delta H - T\Delta S < 0$

$$or \qquad T\Delta S > \Delta H \quad or \quad T > \frac{\Delta H}{\Delta S} \quad or \quad T > \frac{61170 \ J \ mol^{-1}}{132 \ J K^{-1} mol^{-1}} \quad or \quad T > 463.4 \ K$$

82.(ABCD)

$$\begin{split} S_{200(B)} &= \int\limits_{0}^{200} \frac{C_P \ dT}{T} = 7 \ J \ mol^{-1} \ K^{-1} \\ S_{200(\ell)} &= 7 + \frac{7500}{200} = 44.5 \ J \ mol^{-1} \ K^{-1} \end{split}$$

$$S_{300(\ell)} = 44.5 + \int_{200}^{300} \frac{C_p - dT}{T} = 4 = 44.5 + 60 \ln \frac{300}{200} + 1.6 = 70.43 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$S_{300(g)} = 70.43 + \frac{3000}{300} = 170.453 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$S_{600(g)} = 170.43 + 50 \ln \frac{600}{300} = 205.09 \text{ JK}^{-1} \text{ mol}^{-1}$$

83.(-6) (i) 20L atm (ii)
$$W2 = 0 (0 \times \Delta V = 0)$$
 (iii) -6 L atm

- (i) State A to state B (Isobaric expansion) $\mbox{Work done by the gas} = W_1 == -p(V_B V_A) = -1(40 20) = -20L \mbox{ atm}$
- (ii) State B to state C (isochoric process) $Work\ done\ by\ the\ gas\ =W_2=0(0\times\Delta V=0)$
- (iii) State C to state A (isothermal compression)

Work done on the gas =
$$W_3$$
 = -2.303 nRT log $\frac{V_A}{V_C}$

$$= -2.303 \text{pV} \log \frac{V_A}{V_C} (\text{pV} = \text{p}_A V_A = \text{p}_B V_B = \text{mRT} = 20) = -20 \, \ell \text{n} (\frac{1}{2}) = 20 \text{x} \, \ell \text{n} (2) = 14 \, \ell \text{$$

$$\therefore$$
 total work done by the gas = $W_1 + W_2 + W_3 = -20 + 0 + 14 = -6L$ atm

84.(A) (a)
$$0.25 \times 2808 \times \frac{x}{180} \times 10^3 = 62.5 \times 9.81 \times 3$$

 $x = 0.47 \text{ gm}.$

(b)
$$0.25 \times 2808 \times 10^{3} \times \frac{y}{180} = 62.5 \times 9.81 \times 3000$$

 $y = 470 \text{ gm}, \implies y = 0.47 \text{ kg}$

$$X = my$$
 \Rightarrow $0.47 = m \times 0.47 \Rightarrow$ $m = 1$

85.(6)
$$W = -P_{ext}(V_f - V_i) = -(1 \ atm) \ (8-2) \ L = -6L \ atm$$

as
$$q = 0$$
 so

$$\Delta E = W$$
 \Rightarrow $3(8P_f - 12) = -6$

$$8P_f = 12 - \frac{6}{3} = 10$$
 \Rightarrow $P_f = \frac{5}{4}$ atm

So,
$$\frac{T_f}{T_i} = \frac{\frac{5}{4} \times 3}{\frac{4}{6} \times 2} = \frac{10}{12}$$

So
$$\Delta S = 3\frac{12}{300} \ln \left(\frac{10}{12}\right) + \frac{12}{300} \ln 8 = \frac{3 \times 12}{300} \ln \left(\frac{5}{6} \times 2\right) = \frac{12}{100} \ln \left(\frac{5}{3}\right) \times 100 \text{ J}$$

$$= 12(\ln 5 - \ln 3) = 12 \times 2.3 \times (0.7 - 0.48) = 12 \times 2.3 \times 0.22 = 6.072 \text{ J/K} = 6 \text{ J/K}$$

86.(0) In isothermal reversible process.

$$\Delta S = \frac{q_{rev}}{T}$$

$$q = -w = 2.303 \text{ RT log } \frac{V_2}{V_1} = 2740.6 \text{ J/mole}$$

$$\Delta S_{surr.} = \frac{q_{rev.}}{T} = \frac{2740.6}{300} = 9.135 \text{ J/K mole}$$

$$\Delta S_{\text{surr.}} = -\Delta S_{\text{system}} = -9.135 \text{ JK}^{-1} \text{ mole}^{-1}$$

$$\Delta S_{universe} = 0$$

87.(B)
$$\Delta H^{o} = H \left[CaSO_{4} \cdot \frac{1}{2} H_{2}O(s) \right] + H \left[\frac{3}{2} H_{2}O(g) \right]$$

$$-H[CaSO_4.2H_2O(s)] = 833 \text{ kJ mol}^{-1} = +484 \text{ kJ for } 1 \text{ kg}$$

88.(C)
$$\Delta H^{0} = \Delta H^{0} - \Delta S^{0} = 17920 \text{ J mol}^{-1}$$

$$\Delta G^{o} = -2.303 \text{ RT } \log K_{p}$$

log K_p =
$$\frac{\Delta G^{o}}{2.303 \text{ RT}}$$
 = $7.22 \times 10^{-4} (P_{\text{H}_2\text{O}})^{3/2}$

$$P_{H_2O} = 8.1 \times 10^{-3} \text{ atm}$$

89.(A)
$$P_{H_2O} = 1, K_P = 1$$

$$\Delta G^{o} = 0$$
 at eqm

$$\Delta H^o = T\Delta S^o \Rightarrow T = \frac{\Delta H^o}{\Delta S^o} = 380 K = 107^o C$$

90.(B)
$$-q_c = q_h \left(\frac{Tc}{T_h}\right) = 150 \times \frac{200}{1000}$$

Heat rejected = 30 kJ

91.(C)
$$\Delta S = \frac{q_{rev}}{T} = \frac{q_h}{T_h} = \frac{150 \times 10^3}{1000} = 150 \text{ JK}^{-1}$$

92.(B)
$$\Delta G = \Delta H - T \Delta S$$

$$\Delta H = 0; \Delta S = 150 \text{ JK}^{-1}$$


$$\Delta G = -150 \text{ kJ}$$

94.
$$q_1 > q_2$$

95.
$$n_{\text{water gas}} = \frac{112}{22.4} = 5 \, \text{moles}$$

$$\Rightarrow$$
 Heat evolved = $2.5 \times 241.8 + 2.5 \times 283 = 1312 \text{ kJ}$

96. Energy =
$$\frac{5}{8} \times 40 + \frac{3}{8} \times 50 = 43.75 \text{ kJ}$$

97.(C) At equilibrium,
$$\Delta G = 0$$
 In (D) option $\Delta ng \neq 0$ \Rightarrow $\Delta H \neq \Delta E$

98.(D)
$$\Delta H = \Delta U \qquad \left(\Delta n_g = 0\right)$$

$$\therefore \qquad \Delta U = -185 \times 2 \quad \text{(For 2 moles)}$$

$$= -370 \, \text{kJ}$$

99.(D)
$$\Delta H = \Delta E + \Delta n_g RT$$
 In (D) option $\Delta n_g \neq 0 \implies \Delta H \neq \Delta E$

100.(C)
$$\Delta H - \Delta U = \Delta n_g RT$$

$$C_8 H_{18}(\ell) + \frac{25}{2} O_2(g) \longrightarrow 8CO_2(g) + 9H_2O(\ell)$$

$$= -4.5 \times 8.314 \times 10^{-3} \times 298 \, kJ = -11.15 \, kJ$$

Solution | Workbook-2 14 Thermodynamics